NOW TRY IN ENGLISH

CLIL

Oxide Nomenclature

Li ₂ O	Lithium oxide	Fe ₂ O ₃	Iron(III) oxide
Na ₂ O	Sodium oxide	Cu ₂ O	Copper(I) oxide
K ₂ O	Potassium oxide	CuO	Copper(II) oxide
BeO	Beryllium oxide	Ag ₂ O	Silver oxide
MgO	Magnesium oxide	ZnO	Zinc oxide
CaO	Calcium oxide	PbO	Lead(II) oxide
BaO	Barium oxide	PbO ₂	Lead(IV) oxide
Al ₂ O ₃	Aluminium oxide	HgO	Mercury(II) oxide
FeO	Iron(II) oxide	NiO	Nickel(II) oxide

Anhydrides Nomenclature

B_2O_3	Boron oxide	P_2O_3	Diphosphorus trioxide
СО	Carbon monoxide	P_2O_5	Diphosphorus pentoxide
CO ₂	Carbon dioxide	As ₂ O ₃	Diarsenic trioxide
SiO ₂	Silicon dioxide	As ₂ O ₅	Diarsenic pentoxide
N ₂ O	Nitrous oxide	SO ₂	Sulphur dioxide
NO	Nitrogen oxide	SO ₃	Sulphur trioxide
N ₂ O ₃	Dinitrogen trioxide	Cl ₂ O ₃	Dichlorine trioxide
NO ₂	Nitrogen dioxide	Cl ₂ O ₅	Dichlorine pentoxide
N ₂ O ₅	Dinitrogen pentoxide	Cl ₂ O ₇	Dichlorine heptoxide

Hydroxides Nomenclature

LiOH	Lithium hydroxide	Fe(OH) ₃	Iron(III) hydroxide
NaOH	Sodium hydroxide	CuOH	Copper(I) hydroxide
КОН	Potassium hydroxide	Cu(OH) ₂	Copper(II) hydroxide
Be(OH) ₂	Beryllium hydroxide	AgOH	Silver hydroxide
Mg(OH) ₂	Magnesium hydroxide	Zn(OH) ₂	Zinc hydroxide
Be(OH) ₂	Calcium hydroxide	Pb(OH) ₂	Lead(II) hydroxide
Ca(OH) ₂	Barium hydroxide	Cd(OH) ₂	Cadmium hydroxide
Al(OH) ₃	Aluminium hydroxide	Hg(OH) ₂	Mercury hydroxide
Fe(OH) ₂	Iron(II) hydroxide	Ni(OH) ₂	Nickel hydroxide

Acids Nomenclature

H ₃ BO ₃	Boric acid	HCIO	Hypochlorous acid
H ₂ CO ₃	Carbonic acid	HCIO ₂	Chlorous acid
HNO ₂	Nitrous acid	HClO₃	Chloric acid
HNO ₃	Nitric acid	HCIO ₄	Perchloric acid
H ₂ SO ₃	Solphurous acid	HF	Hydrofluoric acid
H ₂ SO ₄	Solphuric acid	HCI	Hydrocloric acid
H ₃ PO ₃	Phosphorous acid	HBr	Hydrobromic acid
H ₃ PO ₄	Phosphoric acid	HI	Hydriodic acid
H ₃ AsO ₃	Arsenious acid	H ₂ S	Hydrogen sulphide
H ₃ AsO ₄	Arsenic acid	HCN	Hydrocianic acid

Oxide

An oxide is a binary chemical compound of the oxygen with other chemical elements.

Two hundred years ago in the eighteen century, oxides were named calxes or calces after the calcination process used to produce oxides.

Oxides can be named after the amount of oxygen atoms in the oxide.

Oxides containing only one oxygen are called oxide or monoxide; those containing two oxygen atoms, are called dioxide; three oxygens, are called trioxide, four oxygens, are called tetroxide, and so on following the Greek numerical prefixes.

There are three types of oxides: oxides, peroxides and superoxides.

They count as oxides but have different oxidation states (valences) and react in different ways compared to oxides.

In the oxide, oxygen has valence -2, in the peroxydes valence -1 and in the superoxides -½. Generally, oxides are insulating to electricity.

Whit this property silicon dioxide, as silicon can easily be oxidized and the resulting part can be made into a transistor.

This is the basis for much of modern computer technology.

Oxides of more electropositive elements, like metals, tend to be basic and react with water to form hydroxides.

For example, lithium oxide is basic; when hydrated, it forms lithium hydroxide. Oxides of more electronegativre elements, like non-metals, tend to be acids. They are called anhydrides.

Anhydrides react with water, and form oxigen acids.

For example, dinitrogen pentoxide is acid; nitric acid is the hydrated form.

(Adapted from Wikipedia)

Glossary

Binary	Binario	Compound	Composto
Valence	Valenza	Non-metal	Non metallo
Metal	Metallo	Anhydride	Anidride
Oxide	Ossido	Peroxide	Perossido
Hydroxide	idrossido	Nomenclature	Nomenclatura
Acid	Acido	HCI	Hydrocloric acid

Practise

Match the words in table A with the English equivalent in table B. Use a dictionary if needed.

Table A

Α	Conservazione della massa
В	Proporzioni multiple
С	Ammoniaca
D	Proporzioni definite
E	Acido fosforico
F	Nomenclatura
G	Ossidi
H	Perossidi
	Idrossidi
J	Anidridi
K	Acidi
L	Idruri
М	Idracidi
Ν	Numero di ossidazione
0	Valenze
Р	Acido cloridrico
Q	Rapporti di combinazione
R	Acido nitrico
S	Acido fosforoso
Т	Acido solforico

Table B

1	Oxides
2	Hydrocloric acid
3	Multiple proportions
4	Valences
5	Phosphorous acid
6	Ammonia
7	Peroxides
8	Oxidation number
9	Nitric acid
10	Definite proportions
11	Hydroxides
12	Combination ratio
13	Phosphoric acid
14	Hydrides
15	Mass conservation
16	Anhydrides
17	Nomenclature
18	Acids
19	Sulphuric acid
20	Hydracids

Complete the text with the most suitable words.

The (1) has a foundamental importance in chemistry.
With this concept we will be able to realise the chemical formula of a generic compound.
(2) react with (3) to form binary compound
named oxides.
For binary compound we mean a compound formed by two elements alone.
There are two kinds of nomenclature: tradictional and (4)(Interna-
tional Union of Pure and Applied Chemistry).
In every chemical transformation the sum of the (5) of the reactants
is equal to the sum of the (6) of the reaction products.
Oxides react with water to form (7)
Anhydrides or acid oxides react with water to form (8)

Keys

Match the words in table A with the English equivalent in table B. Use a dictionary if needed.

Table A	Table B
А	15
В	3
С	6
D	10
Ε	13
F	17
G	1
Н	7
	11
J	16
К	18
L	14
М	20
Ν	8
0	4
Р	2
Q	12
R	9
S	5
Т	19

Complete the text with the most suitable words.

The (1) valence has a foundamental importance in chemistry.

With this concept we will be able to realise the chemical formula of a generic compound. (2) Metals react with (3) oxigen to form binary compound named oxides.

For binary compound we mean a compound formed by two elements alone.

There are two kinds of nomenclature: tradictional and (4) I.U.P.A.C. (International Union of Pure and Applied Chemistry).

In every chemical transformation the sum of the masses of the (5) reactants is equal to the sum of the (6) masses of the reaction

products.

Oxides react with water to form (7) hydroxides.

Anhydrides or acid oxides react with water to form (8) acids.