Percorso 2

- 1) indicare le cifre significative dei seguenti valori:
- a) 133,0 ml; b) 0,00310 g c) 1,20 \cdot 10⁻³ cm; d) 1,2 \cdot 10⁻³ kg; e) 1,99 \cdot 10³ m; f) 1030 g \cdot cm⁻².
- 2) esprimere il risultato delle seguenti operazioni con in numero di cifre significative appropriato:
- a) 1,23 · 0,4; b) 68,3 · 0,072 c) 104,96 · 0,610; d) 96,47 / 2,64; e) 13,63 / 0,552; f) 9,83 / 9,3; g) 4,21 + 3,472 + 0,04725 + 0,12 + 0,0047.
- 3) Una sorgente monocromatica emette una radiazione ultravioletta con una lunghezza d'onda di 2536 Å [1 Å (Angstrom) = $1 \cdot 10^{-10}$ m], trasformare questa lunghezza d'onda in a) centimetri (cm), b) micron (μ m) e c) nanometri (nm).
- **4)** Su una lastra di rame viene stratificato uno spessore di zinco di 0,00413 cm, trasformare questo spessore in Angstrom [1 Å (Angstrom) = $1 \cdot 10^{-10}$ m].
- 5) La dose mortale del veleno di un insetto è $1 \cdot 10^{-5} \, \mu g$. A quanti grammi corrisponde?
- **6)** Una sostanza ha una densità, a 20°C, paria a 1,4646 g/cm³. Determinare la massa di 25,000 ml di questa sostanza.
- **7)** L'etanolo al 95% V/V ha una densità, a 20°C, paria a 0,8030 g/cm³. Determinare la massa di 250,00 ml di questa sostanza.
- **8)** Il benzene ha una densità, a 20°C, paria a 0,87890 g/cm³. Determinare la massa, in milligrammi, di 25,000 ml di questa sostanza.
- 9) La molecola dell'acqua ha una area di 10 $\mbox{Å}^2$. Calcolare quante molecole d'acqua servono a coprire un'area di 1 cm².

Soluzioni

3) a = 2,536
$$\cdot$$
 10⁻⁷ cm; b = 0,2536 μ m; c = 253,6 nm.

9) 1 Å =
$$1 \cdot 10^{-10}$$
 m = $1 \cdot 10^{-8}$ cm \rightarrow 10 Å = $(10 \cdot 10^{-8}$ cm)² = $100 \cdot 10^{-16}$ cm² = $1 \cdot 10^{-14}$ cm² 1 Å = $1 \cdot 10^{-10}$ m \rightarrow 10 Å² = $(10 \cdot 10^{-10}$ m)² = $100 \cdot 10^{-20}$ m² = $1 \cdot 10^{-18}$ m² 1 cm² = $1 \cdot 10^{-4}$ m²

Per cui numero di molecole d'acqua = $1 \cdot 10^{-4}$ m² / $1 \cdot 10^{-18}$ m² = $1 \cdot 10^{14}$